Roll No.,....

320452(20)

B. E. (Fourth Semester) Examination, 2020

APR-MAY 2022 New Scheme)

(Civil Engg. Branch)

FLUID MECHANICS-II

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) of each question is compulsory. Attempt any two parts from (b), (c) and (d) of each question.

Unit-I

- 1. (a) What do you understand by hydrodynamically smooth and rough pipes?
 - (b) A pipe of diameter 0,1 m carries water at 15°C. If sand grains 0.75 mm in diameter are cemented on the inner surface of the pipe for test purposes, at

what velocity of water will:

- (i) the surface roughness just begins to disturb the laminar sublayer, and
- (ii) the pipe wall behaves as rough boudnary.

Kinematic viscosity of water at 15°C is 1.14×10^{-2} stokes.

(c) A liquid of specific gravity 0.88 and absolute viscosity 6.533 × 10⁻⁴ N.s/m² flows through a pipe of diameter 0.15 m at the rate of 60 litres per second. If the loss of head in 100 m length of pipe is 4.56 m, determine whether the pipe is rough or smooth.

(d) What is a compound pipe? How would, you determine the equivalent size of a compound pipe?

Unit-II

- 2. (a) What are the factors affecting the boundary layer thickness?
 - (b) A smooth two-dimensional flat plate is exposed to a wind velocity of 100 km per hour. If laminar boundary layer exists up to a value of Rex equal to 3×10^5 , find the maximum distance up to which

laminar boundary layer persists, and find its maximum thickness. Assume kinematic viscosity of air as 1.49×10^{-5} m²/s.

- (c) Assuming that the velocity distribution in the boundary layer is given by, $\frac{v}{V} = \left(\frac{y}{\delta}\right)^{\frac{1}{7}}$. Calculate $\frac{\delta^*}{\delta}$, $\frac{\theta^*}{\delta}$
 - and $\frac{\delta_E}{\delta}$. If at a certain section, free stream velocity V was observed to be 10 m/s and the thickness of the boundary layer as 25 mm, then calculate the energy loss per unit length due to the formation of the boundary layer. Take $\rho = 1.226 \text{ kg/m}^3$.
- (d) A submarine which may be supposed to approximate a cylinder 3 m in diameter and 15 m long travels submerged at 1.54 m/s in sea water at 4°C. Find the drag exerted on it. Take ϑ for sea water at 4°C as 1.67 × 10–6 m²/s and as 1025 kg/m³. Also find the friction drag.

Unit-III

3. (a) State and discuss the assumptions made in the derivation of the dynamic equation for gradually varied flow.

320452(20)

1

(b) A rectangular channel carries a discharge of 2 m³/s per meter width. If the loss of energy in the hydraulic jump is found to be 2.75 m, determine the conjugate depths before and after the jump.

(c) A horizontal rectangular channel 4 m wide carries a discharge of 16 m³/s. Determine whether a jump may occur at an initial depth of 0.5 m or not. If a jump occurs, determine the sequent depth to this initial depth. Also determine the energy loss in the jump.

(d) In a rectangular channel there occurs a jump corresponding to $Fr_1 = 2.5$. Determine the critical depth and head loss in terms of the initial depth y_1 . 7

Unit-IV

- 4. (a) Explain the water hammering effect in pipe.
 - (b) Water at 15°C flows at 4 m/s in a 150 mm pipe. At what velocity must oil at 30°C flow in a 75 mm pipe for the two flows to be dynamically similar? Take υ for water at 15°C as 1.145×10^{-6} m²/s and that for oil at 30°C as 3.0×10^{-6} m²/s,

(c) A 1: 10 scale model of a submarine moving far below the surface of water is tested in a water

tunnel. If the speed of the prototype is 8 m/s, determine the corresponding velocity of water in the tunnel. Also determine the ratio of the drag for the model and the prototype:

$$v_{\text{sea water}} = 1.121 \times 10^{-6} \,\text{m}^2/\text{s};$$
 $v_{\text{water}} = 1.00 \times 10^{-6} \,\text{m}^2/\text{s};$
 $\rho_{\text{sea water}} = 1027 \,\text{kg/m}^3.$

$$\rho_{\text{water}} = 1000 \,\text{kg/m}^3.$$

(d) List the important dimensionless numbers and their significances.

Unit-V

- 5. (a) What are the different types of efficiency considered in hydraulic turbines?
 - (b) A double acting reciprocating pump having piston area 0.1 m² has a stroke 0.30 m long. The pump is discharging 2.4 m³ of water per minute at 45 r.p.m. through a height of 10 m. Find the slip of the pump and the power required to drive the pump.
 - (c) A Pelton wheel has to be designed for the following data. Power to be developed = 6000 kW. Net head available = 300 m; Speed = 550 rpm; Ratio

of jet diameter to wheel diameter = 1/10; and overall efficiency = 85%. Find the number of jets; diameter of the jet; diameter of the wheel; and the quantity of water required.

7

(d) Describe the function of draft tube.

7

Stronglisch Egiland (11 to object) odgiteit og grasynena i 11 fersk år barbuson menn sedsken menns